Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(7): 1424-1431, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478848

RESUMO

Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.


Assuntos
Transportador 2 de Aminoácido Excitatório , Ácido Glutâmico , Transportador 2 de Aminoácido Excitatório/metabolismo , Impedância Elétrica , Ácido Glutâmico/metabolismo , Transporte Biológico , Transportador 3 de Aminoácido Excitatório/metabolismo
2.
Front Mol Biosci ; 10: 1286673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074092

RESUMO

Glutamate is an essential excitatory neurotransmitter and an intermediate for energy metabolism. Depending on the tumor site, cancer cells have increased or decreased expression of excitatory amino acid transporter 1 or 2 (EAAT1/2, SLC1A3/2) to regulate glutamate uptake for the benefit of tumor growth. Thus, EAAT1/2 may be an attractive target for therapeutic intervention in oncology. Genetic variation of EAAT1 has been associated with rare cases of episodic ataxia, but the occurrence and functional contribution of EAAT1 mutants in other diseases, such as cancer, is poorly understood. Here, 105 unique somatic EAAT1 mutations were identified in cancer patients from the Genomic Data Commons dataset. Using EAAT1 crystal structures and in silico studies, eight mutations were selected based on their close proximity to the orthosteric or allosteric ligand binding sites and the predicted change in ligand binding affinity. In vitro functional assessment in a live-cell, impedance-based phenotypic assay demonstrated that these mutants differentially affect L-glutamate and L-aspartate transport, as well as the inhibitory potency of an orthosteric (TFB-TBOA) and allosteric (UCPH-101) inhibitor. Moreover, two episodic ataxia-related mutants displayed functional responses that were in line with literature, which confirmed the validity of our assay. Of note, ataxia-related mutant M128R displayed inhibitor-induced functional responses never described before. Finally, molecular dynamics (MD) simulations were performed to gain mechanistic insights into the observed functional effects. Taken together, the results in this work demonstrate 1) the suitability of the label-free phenotypic method to assess functional variation of EAAT1 mutants and 2) the opportunity and challenges of using in silico techniques to rationalize the in vitro phenotype of disease-relevant mutants.

3.
Front Pharmacol ; 13: 872335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677430

RESUMO

Excitatory amino acid transporters (EAAT/SLC1) mediate Na+-dependent uptake of extracellular glutamate and are potential drug targets for neurological disorders. Conventional methods to assess glutamate transport in vitro are based on radiolabels, fluorescent dyes or electrophysiology, which potentially compromise the cell's physiology and are generally less suited for primary drug screens. Here, we describe a novel label-free method to assess human EAAT function in living cells, i.e., without the use of chemical modifications to the substrate or cellular environment. In adherent HEK293 cells overexpressing EAAT1, stimulation with glutamate or aspartate induced cell spreading, which was detected in real-time using an impedance-based biosensor. This change in cell morphology was prevented in the presence of the Na+/K+-ATPase inhibitor ouabain and EAAT inhibitors, which suggests the substrate-induced response was ion-dependent and transporter-specific. A mechanistic explanation for the phenotypic response was substantiated by actin cytoskeleton remodeling and changes in the intracellular levels of the osmolyte taurine, which suggests that the response involves cell swelling. In addition, substrate-induced cellular responses were observed for cells expressing other EAAT subtypes, as well as in a breast cancer cell line (MDA-MB-468) with endogenous EAAT1 expression. These findings allowed the development of a label-free high-throughput screening assay, which could be beneficial in early drug discovery for EAATs and holds potential for the study of other transport proteins that modulate cell shape.

4.
Trends Pharmacol Sci ; 43(5): 358-361, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35232590

RESUMO

Solute carrier transporters (SLCs) limit receptor activation via uptake of extracellular ligands. Novel concepts are emerging that describe the modulation of intracellular and plasma membrane receptors by ligand influx and efflux via SLCs, respectively. Here, we evaluate recent insights and provide an outlook for developing potential therapeutic strategies.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas Carreadoras de Solutos , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Ligantes , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Carreadoras de Solutos/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163125

RESUMO

The organic cation transporters OCT1-3 (SLC22A1-3) facilitate the transport of cationic endo- and xenobiotics and are important mediators of drug distribution and elimination. Their polyspecific nature makes OCTs highly susceptible to drug-drug interactions (DDIs). Currently, screening of OCT inhibitors depends on uptake assays that require labeled substrates to detect transport activity. However, these uptake assays have several limitations. Hence, there is a need to develop novel assays to study OCT activity in a physiological relevant environment without the need to label the substrate. Here, a label-free impedance-based transport assay is established that detects OCT-mediated transport activity and inhibition utilizing the neurotoxin MPP+. Uptake of MPP+ by OCTs induced concentration-dependent changes in cellular impedance that were inhibited by decynium-22, corticosterone, and Tyrosine Kinase inhibitors. OCT-mediated MPP+ transport activity and inhibition were quantified on both OCT1-3 overexpressing cells and HeLa cells endogenously expressing OCT3. Moreover, the method presented here is a valuable tool to identify novel inhibitors and potential DDI partners for MPP+ transporting solute carrier proteins (SLCs) in general.


Assuntos
Impedância Elétrica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , 1-Metil-4-fenilpiridínio/efeitos adversos , Transporte Biológico , Transporte Biológico Ativo , Células HEK293 , Herbicidas/efeitos adversos , Humanos , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Transportador 1 de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/genética
6.
Front Pharmacol ; 12: 722889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447313

RESUMO

The solute carrier (SLC) superfamily represents the biggest family of transporters with important roles in health and disease. Despite being attractive and druggable targets, the majority of SLCs remains understudied. One major hurdle in research on SLCs is the lack of tools, such as cell-based assays to investigate their biological role and for drug discovery. Another challenge is the disperse and anecdotal information on assay strategies that are suitable for SLCs. This review provides a comprehensive overview of state-of-the-art cellular assay technologies for SLC research and discusses relevant SLC characteristics enabling the choice of an optimal assay technology. The Innovative Medicines Initiative consortium RESOLUTE intends to accelerate research on SLCs by providing the scientific community with high-quality reagents, assay technologies and data sets, and to ultimately unlock SLCs for drug discovery.

7.
Sci Rep ; 11(1): 12290, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112854

RESUMO

The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET-norepinephrine (NE), dopamine (DA) and epinephrine (EP)-were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z' = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.


Assuntos
Fluoxetina/análogos & derivados , Ensaios de Triagem em Larga Escala , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Técnicas Biossensoriais , Dopamina/metabolismo , Doxiciclina/farmacologia , Epinefrina/metabolismo , Fluoxetina/química , Fluoxetina/isolamento & purificação , Humanos , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Especificidade por Substrato
8.
Sci Rep ; 11(1): 1312, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446713

RESUMO

Members of the solute carrier (SLC) transporter protein family are increasingly recognized as therapeutic drug targets. The majority of drug screening assays for SLCs are based on the uptake of radiolabeled or fluorescent substrates. Thus, these approaches often have limitations that compromise on throughput or the physiological environment of the SLC. In this study, we report a novel application of an impedance-based biosensor, xCELLigence, to investigate dopamine transporter (DAT) activity via substrate-induced activation of G protein-coupled receptors (GPCRs). The resulting assay, which is coined the 'transporter activity through receptor activation' (TRACT) assay, is based on the hypothesis that DAT-mediated removal of extracellular dopamine directly affects the ability of dopamine to activate cognate membrane-bound GPCRs. In two human cell lines with heterologous DAT expression, dopamine-induced GPCR signaling was attenuated. Pharmacological inhibition or the absence of DAT restored the apparent potency of dopamine for GPCR activation. The inhibitory potencies for DAT inhibitors GBR12909 (pIC50 = 6.2, 6.6) and cocaine (pIC50 = 6.3) were in line with values from reported orthogonal transport assays. Conclusively, this study demonstrates the novel use of label-free whole-cell biosensors to investigate DAT activity using GPCR activation as a readout. This holds promise for other SLCs that share their substrate with a GPCR.


Assuntos
Técnicas Biossensoriais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Portadores de Fármacos , Descoberta de Drogas , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...